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Estimates of Critical Lengths and Critical Temperatures 
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Local Ward identities are derived which lead to the mean-field upper 
bound for the critical temperature for certain multicomponent classical 
lattice systems (improving by a factor of two an estimate of Brascamp-Lieb). 
We develop a method for accurately estimating lattice Green's functions 
Id yielding 0.3069 < 14 < 0.3111 and the global bounds ( d -  �89 < 
Ia < (d - 1) -1 for all d ~> 4. The estimate for Ia implies the existence of 
a critical length for classical lattice systems with fixed length spins. For 
v-component spins with fixed length b on the lattice 7/a, v = 1, 2, 3, 4, 
the critical temperature for spontaneous magnetization satisfies 

2Jb 2 d - I 2Jb 2 d 
k v < Tc ~< k v ford~> 4 

Using GHS or generalized Griffiths' inequalities, we find that the upper 
bounds on the critical temperature extend to certain classical and quantum 
systems with unbounded spins. Absence of symmetry breakdown at high 
temperature for quantum lattice fields follows from bounding the energy 
density by a multiple of kT.  Path space techniques for finite degrees of 
freedom show that the high-temperature limit is classical. 
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1. INTRODUCTION 

C e r t a i n  q u a n t u m  sys tems a t  n o n z e r o  t e m p e r a t u r e  T m a y  be assoc ia ted  w i t h  

a ( con t inuous )  c lass ical  sys tem (pa th  space)  wi th  a f ini te  l e n g t h / 3  = 1 / k T  

in  one  d i r ec t i on  ( the /3  d i rec t ion) .  Th is  " t e m p e r a t u r e  d i r e c t i o n "  c o r r e s p o n d s  

to  the  " i m a g i n a r y  t i m e  d i r e c t i o n "  o f  E u c l i d e a n  field theory .  (16,21) T h e  
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existence of a critical temperature for the quantum system corresponds to 
the existence of a critical length for the classical system. As a result of this 
correspondence, analogous techniques may be used to study this critical 
behavior of classical and quantum systems. We derive a mean field bound 
(Griffiths' third inequality ~17~) for the absence of spontaneous magnetization 
for one-component classical lattice systems, which may be applied to quantum 
lattice fields by using a GHS inequality ~13,38~ for the Duhamel correlation 
functions, ~6~ together with an equipartition bound (Sections 6-8). For  two-, 
three-, and four-component classical lattice systems we use a local Ward 
identity (Section 3) and generalized Griffiths' inequalities ~1,7~ to obtain the 
mean-field bound. This mean-field bound improves by a factor of two an 
estimate of Brascamp and Lieb. ~4~ For  fixed-length rotators with arbitrarily 
many components we obtain a bound which is almost the mean-field bound, 
and which converges to the mean-field bound as the number of components 
increases. 

The mean-field bound provides a good upper bound on the critical 
temperature of classical lattice systems. The lower bound derived from the 
infrared bound ~11~ is estimated by an accurate computation of lattice Green's 
functions (Section 5). These estimates prove the existence of a critical length 
for the breakdown of a (continuous) symmetry. Critical lengths for certain 
continuum classical systems follow from the existence of a critical tempera- 
ture for the associated quantum system. 

Quantum field models in two space-time dimensions do not have long- 
range order at nonzero temperature. This follows from Nelson's sym- 
metry, ~29,36~ applying the transfer matrix in the space direction. ~21~ On the 
other hand, the Peierls' argument shows that at zero temperature the ground 
state (vacuum) is degenerate for one-component models. ~la~ However, even 
at zero temperature there are no Goldstone bosons ~3b'~,12) and so there is 
no continuous symmetry breaking. In fact, for two-component models the 
vacuum is unique, c3b) 

In three space-time dimensions both discrete and continuous sym- 
metries can be broken in the ground state. ~ On the other hand, there are 
no Goldstone bosons in three space-time dimensions at nonzero tempera- 
ture. t2~ Thus a continuous symmetry cannot be broken at nonzero 
temperature. 

In four space-time dimensions the existence of a critical temperature 
for the breakdown of a (continuous) symmetry for quantum lattice fields 
follows from the control of both the low-temperature and high-temperature 
limits. The breakdown of symmetry at low temperature follows from infrared 
bounds C~ as discussed in Ref. 10 (quantum crystals). We briefly review in 
Section 9 the proof  of symmetry breaking at nonzero temperature, based 
on infrared bounds in four space-time dimensions and on the Peierls' 



Critical Lengths and Temperatures for Lattice Systems 125 

argument in three space-time dimensions (discrete symmetry). To show the 
absence of symmetry breakdown at high temperatures (and ergodicity of the 
KMS state in certain cases using correlation inequalities as in Corollary 3.3 
and Refs. 3a and 3b), we use local Ward identities and either GHS or general- 
ized Griffiths' inequalities. To apply this method, one must control the high- 
temperature divergences, which amounts to obtaining an equipartition 
bound: (I/V)(H)~ <~ ckT, for some constant c, where H i s  the Hamiltonian, 
V the volume of the system, and T the temperature. This is done by reducing 
the estimate to one involving only one degree of freedom and then showing 
that the high-temperature limit is classical--which follows by path space 
techniques (Sections 6-8). 

The unifying aspect of the various results obtained is the corre- 
spondence between a quantum system with inverse temperature/3 and the 
associated classical system with length/3. As a further illustration of this 
correspondence we consider a simple quantum system (Ising model with 
transverse external field) for which the associated classical system is a contin- 
uum Ising model (Sections 2.5 and 10). The particular functional form of 
the dependence of spontaneous magnetization and critical temperature on the 
Ising couplings (see Ref. 9) is such that these quantities converge in the 
continuum limit determining the path space of the quantum system. 

2. CLASSICAL A N D  Q U A N T U M  S Y S T E M S  

In this section we describe the models to be considered and we discuss 
some of their general properties which will be useful in later sections. 

2.1. Classical Systems 

Let A be a finite subset of y_a. To each point i ~ A is associated a spin 
a t e R ~ (v-component spin) with a priori single site distribution dt~o(ch), which 
depends only on ]la, ll = ( ~  =1 o["~2) 1/2, a~ ~ being the c~ component of a,. 

The interaction is a ferromagnetic pair interaction of the form 

where J~j >/ 0, h /> 0, and (tj) denotes pairs of points in g a (each pair 
counted only once). We define cr~ = 1-]~A ,,~-(~, where A is a subset of A 
with finite multiplicity. That is, the set A may contain a given point of A 
more than once. For example, ~(1~2a(1~8 a = a~ ~, where A = {3, 3, 4}. 
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Denoting by <...) the expectation value at inverse temperature/3, 

<era > = f aAe -~n 1-1, dg0(a 0 

f e - ' "  l--f, d/zo(a,) 

the following properties of these models are known: 

(a) v = 1,/Zo arbitrary (even); Griffiths' inequalities (e.g., Refs. 15 and 
39) 

(b) v = 1, d/z 0 = e -v<l~ da, V ' (~ )  convex for ~ /> 0; GHS inequal- 
ity<S.13,oo~ 

(c) v = 2; generalized Griffiths' inequalities ~Lv,4a~ 

<~To~> >/0 

If  rig0 = exp[ -  V(ll.ll=)] d~ <1> d~ <~', V(0 convex, 

In Appendix A.1 we prove inequality (c), which is stronger than the 
versions appearing in the literature. [The same method gives a straightforward 
proof of (b).] 

(d) v = 3, 4; d/xo = exp[-a(llcrI]2) 2 + bli~ll ~] 1-i~=~ d~, or ~(I[~ll ~ - R~).<~' 
Inequalities (c) hold for any two among the v-components. 

R e m a r k .  By considering limits of measures in (b) and (c), it follows that 
the correlation inequalities hold also for fixed length 8(11~1[ = -  R ~) and 
uniform O(R 2 - II~ll ~) d~ <~' d~% O(R ~ - ~ )  d~ distributions. 

2.2. Q u a n t u m  Systems 

Consider a quantum system with Hamiltonian H, algebra of observ- 
ables (9, and an abelian subalgebra d c (9. The equilibrium state at inverse 
temperature/3 is given by 

<A)  = T r ( e - B n A ) [ T r  e -B~ for A ~ (9 (1) 

(supposing e -Bu is trace-class). 



Critical Lengths and Temperatures for Lattice Systems 127 

If  the kernel of e -BH is nonnegative, a "pa th  space" may be constructed 
so that the expectations of elements of d may be calculated by classical 
function space techniques. (14'16'19'21'24'25) The general relation is 

Tr( e-(B-~")nA~e-(t"-t"-9~An- 1 "'" e-(t2 - q ~ Z A l e - q ~ )  = (An(t~) ... ~1( t l ) )  
Tr e- Bn 

0~<t~ <t2,<.. .~< t~,</3 (2) 

where e{ denotes a classical random variable [ar = {~(t), A ~ d }  is iso- 
morphic to d ] .  The positivity of the kernel of e -au is expressed by the 
fact that the left-hand side of (2) is nonnegative if A~ ..... A~ /> 0. If  the 
quantum system has s space dimensions, the associated classical system has 
d = s + 1 dimensions, the additional dimension being associated with the 
parameter t. This dimension will be called the "t3 direction." 

The Hamiltonian generates an automorphism of (9 given by 

B~ = e*~nBe - ~ n  

The KMS condition, following from (1), is 

<B-,BC> = <CB> (3) 

Expressed in terms of the path space (2), with B, C ~ d ,  (3) becomes 

<~(/3)C(0)> = <C(0)B(0)> = <~(0)d(0)> = <~(t3)C(/3)> (4) 

where the second equality in (4) follows since ~ '  is abelian. Equation (4) 
implies/~(/3) = /~(0); i.e., the path space is periodic with period/3. Thus in 
the/3 direction the length is/3 with periodic boundary conditions/~~ 

If  the Hamiltonian depends on a parameter A, we use the notation 

H = H(A = 0), H '  = (d/da)la=oH(a) 

<B>a = Tr(e- Bn(a)B)/Tr e- Bm~), <B> = <B>o 

We have then 

(d/dh)],~ = o(S>~ = -/3[(H', B) - (H'><B>] (S) 

where the Duhamel two-point function (A, B) is defined by (see Ref. 6 and 
references therein) 

j; (A, B)  = dx  T r ( e -  X ~ A e  -(1-  ~BHB)/Tr e -ell = (B, A) (6) 

Therefore 

(A*, A)  = dx D(x)  
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where 

D(x) = Tr[(e- xBm2A*e-(1 - x)~m2)( e-(1 - x)~m2Ae- x~m2)]/T r e- ~r 

is 

(a) Nonnegative, leading to the Schwartz inequality 

1(.4, B)I 2 ~< (A, A*)(B*, B) 

(b) Convex, leading to the bound 

(A*, A) ~< �89 + A'A> 

since 

(7) 

(8) 

fo tdX D(x) <. {[D(1) + D(0)] = + �89 AA*> 

It is important to notice that if A, B z d the Duhamel two-point func- 
tion may be expressed as an average in the fl direction of path space 
expectations: 

(A, B) = dx<.~(flx)B(O)) (9) 

We may thus apply correlation inequalities to (A, B) if they are valid for 
path space expectations. The Duhamel function is convenient when dis- 
cussing quantum systems, although all results could be formulated directly 
in terms of the path space. 

These general ideas are illustrated by the following models. 

2.3. S c h r 6 d i n g e r  Part ic le  

The algebra d is made up of functions of the position operator q and 
the Hamiltonian has the form 

H =  �89 2 + V(q) 

In Appendix B we give a derivation of the corresponding path space. 
For related discussions see Refs. 19b and 21. We obtain 

Tr exp{--fl[�89 2 + V(q)]} 

= (2~rfl) -1/2 dx exp - f l  dt V(x + V/-fir(t)) (10) 
~o 

where r(t) is the Gaussian stochastic process with covariance 
ei2rtn( t l  - tz)  

<r(tl)r(t2))r = ~ ~ , q, t: ~ [0, 1] 
n r  

= ~ ( ( q  - t2) 2 - I q  - t2l + ~} if - �89  ~< t l -  t2 ~< �89 

(11) 



Critical Lengths and Temperatures for Lattice Systems 129 

Expectations are computed by writing q(t) = qo + ~ r ( t / f l ) ,  where dqo is 
(2~r/3) -z/~ x Lebesgue measure. Note that this path space is translation 
invariant ( t -+ t + to). 

2.4, Quantum Latt ice Fields 

To each point x ~ A, a rectangular sublattice of 2~ s, are associated v 
Schr/Sdinger particles with positions d0(x) = (q(l~(x) ..... q(V~(x)) and momenta 
~(x) = (~r(l~(x) ..... ~r(V~(x)). The Hamiltonian H has the form 

1 
H = ~ [�89 ~ + V(do(x))J + ~ ~ s~lldo(x) - do(y)l? - h ~ 4~'(x) 

x ~ A  ( x , v ) ~ A  x ~ A  

where IIdoll 2 =  ~ = 1  $(~2. We suppose that V(do) depends only on ildoJJ, 
that there exists b > 0 such that V(do) >/ a + b]jdoll 2, that h /> 0, and that 
the couplings dxy are nonnegative (ferromagnetic). Although not a neces- 
sary restriction, it will simplify the discussion in the following sections to 
suppose that dxy is translation invariant: ,lxv = g ( x -  y) with periodic 
boundary conditions at the boundary of A. 

We have then a collection of multicomponent coupled anharmonic 
oscillators. We will call this model a quantum lattice field, since in the case 
where the coupling is nearest neighbor and V is appropriately chosen, the 
limit as the lattice spacing goes to zero will exist and defines a continuum 
quantum field. (1~176 The lattice model is called a quantum crystal in Ref. 10. 

Following the discussion in Section 2.3, the path space is given by the 
measure 

d/z = exp - ~  (x,~>~A ~o ds II~(x, s) - ~ (y ,  s)ll 2 

where dqo and dw are as in Section 2.3, and 

$~(x, s) = qo~(X) + ~/~r~(x, t/~) 

The lattice approximation allows us to apply correlation inequalities 
to the expectations of the fields ~(x, t) and then to the Duhamel functions. 
Assuming the potential V(do) satisfies the appropriate hypothesis of Section 
2.1a-d, we have the following inequalities: 

(a) u = 1 component fields: 

(d/(y), d?(y)(o(z)) - (d~(y)q~(z))(de(y)) 

<. (~(y), 4 ( y ) ) (4 ( z ) )  + (~(y), ~(z))(4~(y)) 

~< (6(y)2)(Sb(z)) + [@(y)2)((~(z)2)]I/2($(y)) = 2($(y)2)(6(y)) 
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(b) v = 2, 3, 4 component fields: 

(r #~(y)r 0 
(r r ~< (r162 

These inequalities follow from Eq. (9) for the Duhamel functions in 
terms of path space expectations, together with the inequalities of Section 2.1, 
which may be applied via the lattice approximation~gb~; see also Appendix 
B. We have used the translation invariance of the path space and the fact 
that (r >/ O. 

2.5. Ising Model  w i t h  Transverse Field 

As another illustration of the relations between classical and quantum 
statistical mechanics, we consider a simple quantum spin-�89 system. (1~'a1~ 

Let o be the Pauli spin matrices, the Hamiltonian H -  - a ( ~  x - 1), 
a > 0. If  we compute the kernel of e - t n  in a representation which diagonal- 
izes ~ we obtain 

T ( J ,  co') = (~r ~ = co"[e-tnl~r ~ = co' 5 

= e-t={(cosh ta)  8~o,,=~, + (sinh ta) 8o~,,,.,} 

= �89 - e-'t~)l/2e r:~176 (12) 

where ~o - + 1, e -2~: = tanh ta. That is, K = ( ta)*,  where the asterisk de- 
notes the usual Ising low-temperature-high-temperature duality transforma- 
tion. 

Since ~,o,,= ~1 T(co", oY)= 1, we may interpret T(~o", co') as a prob- 
ability and construct a path space for the classical random variables 6(0 = 
+1, -/3/2 ~< t ~</3/2. (We take t between -/3/2 and +/3/2 rather than 

between 0 and/3 because the former is appropriate in discussing the limit 
/3 -+ oo.) The path space is determined by the formula 

<~=~1~ F,(6(t-))tgiven 6(0)= o/, 6(/3)= ~o" )  

= ( ~  = o o " l e - ( e l 2 - t , ) ' F , ( o ' ) e - ( t , - t r , - ~  )" ... Fl(trOe-(q+~/2)z~[o ~ = ~o'} 

x <o-~ - -  o;'le-B'~l~ = o., '> - 1  (13) 
Let dvo~,,o~, denote the measure determined by (13). Setting o/ = o/' = ~o and 
summing over co = + 1 with equal weight gives 

(if-I= = ~ F~(6(t~))"N//per~oa~e = Tr[e- (~ '2- t" )nF~(~O'"F~(crOe-(h+e '2m]Tr  e- ~ 

We denote by duper the measure corresponding to (14). 
(14) 
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Note that the Hamiltonian H is nonnegative and has a unique ground 
state 

n = (I/V~)(]~,= = 1> + 1~ = - 1 > ) ,  H a  = o 

In the limit 1~ -+ 0% the expectations (13) and (14) converge to the same 
limit 

(f~, F,(~)e-(~, -t,_ ,~nF,_ ~(~,) ... Fz(~,)f~) (15) 

Introducing a lattice mesh 8 by considering only the variables O(nS), 
-fi[28 ~< n ~< fl/28, the path space is seen to be equivalent to a ferromagnetic, 
nearest neighbor, one-dimensional Ising model with coupling 

1 
K ~  a(nS)a((n + 1)8), K = (a3)* = In [tanh(aS)]~/2 (16) 

r~ 

as follows from (12). 
Let now V be a finite subset of 2 ~. A boundary condition is a specifica- 

tion of e { =  o~ for i e Vq We then define the Hamiltonian Hv(b.c.), 
depending on the boundary condition, by 

= - H .  - H =  

Note that the boundary condition introduces a certain external field in the 
z direction. 

Let 8(0 denote the set of random variables {a,(t)}~v. With the couplings 
J,j = 0 the path spaces corresponding to (13) and (14) are given by the 
product measures 

d~~  0,.(~) = | d~,,, ~,,(a,), 
i E g  

dt ,%(a)  = | d~o~(a,) 

where r to' are specifications of the spins 8(fl), 8(0). 
With nonzero couplings 

f ~ I  Fr d~,o.,,o,(b.c.) 
Cr 

( a  ~ = O a " l e - ~ B I 2 - e , ' H v ( b ' ~  . . .  Fl(C**)e-~q+a/mHv~b'~ = OJ'5 
<a = = ~"[e-B"~(b.~ = o~'> 

(17) 
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where 

dt~,~,.,~,(b.c.) 

= Z=.. , j(b c.) exp , Si(s)ey(s) 
�9 <r B/ 

_ _  t , B / 2  

\ j e g  c / d 

= n m  ~ - -  exp ~ 8J u a,(k3)aj(kS) 
6-.o Z=,,~,,,(b.c.) L<i.j>~v 

(18) 

and Z is the normalization integral, so tha t / ,  is a probability measure. There 
are analogous formulas for dr*vet(b.c.) with a trace in (17). The limit 8---> 0 
in (18) equals (17) by the Trotter product formula and the integral over s 
in (18) is understood as the strong limit of Rieman sums as 8 -+  0. The 
strong continuity of ~(t)--+ 8(t + h) in Lp, 1 -%< p < 0% follows from the 
strong continuity of e - t ~  (see, for example, Ref. 25) or by explicit computa- 
tion from (12). 

Again, as/~ -+ o% the expectations converge to the limit 

(Or(b.c.), F,(a *) e x p [ - ( &  - t,_l)/}v(b.c.)] ... Fl(c~)av(b.c.)) (19) 

The path spaces determined by (18) and the analogous formula for the 
periodic case are in fact continuum Ising models, the limit as 8 ~ 0 of an 
Ising model with coupling in the "space"  direction 8J u (small) and coupling 
in the/3 direction K = (aS)* (large), as follows from (18) and (16). 

The Dirichlet boundary condition for the path space will be useful for 
the discussion in Section 10.1 and is obtained by removing all couplings to 
the complement of the region under consideration. To remove the couplings 
in the space direction we simply set Yu = 0 if i E V, j ~ V c, or equivalently 
we set % = 0 in the definition of Hv(b.c,) in order to obtain Hv D. To ob- 
tain Dirichlet boundary conditions at t = +/~/2 for the path space with 
mesh 3 it is easily seen that we must sum over all possible boundary condi- 
tions ~(/3/2), with the correct statistical weight: 

exp[8 ~ gu~,~(~/2)aj~(fl[2)] = e x p [ -  3H,(a ~ = a(fi/2))] 

and similarly for t = -f i /2.  
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Thus the path space with mesh 8 and Dirichlet boundary conditions is 
determined by the formula 

~ = ~  F~(6(t~))~v,~ 

x Fn(aO... F1 (gO(e- ~ OH~)(q + eJ2Y/O]t~z = tO')] 

X [ ",~o~o , ( ~ z =  to,,le-OH~(e-OHxe-O~)e/o[,~= oa')]-1 

{.,,,~o,, (a~ = to"]{exp[--(lfi -- t,)HvD]}F~(~O{exp[-(t, - t=_l)HvD]} 

X ..-Fl(aO exp[-(�89 + q)HvD]]a ~ = to'}} 

x [ ~  (~*= oa"]exp(--fiHvD)[* ~= o~'}] -1 
LOa"~tO' 

e__, -> (f~v D, F~(~0{exp[ - (t~ - t~ _ Z)/)vD]} "" F~(a0f~v v) (20) 

3. UPPER B O U N D S  ON THE CRIT ICAL T E M P E R A T U R E  

Let H be the Hamiltonian for a finite-volume lattice model. We write 
then 

Tr e- ~ B  
(B} = Tr e -BH 

for an observable B. In the classical case Tr denotes integration with respect 
to the product of a priori single site distributions. Let r t be a one-parameter 
group of transformations such that Tr is invariant under r t ,  and define then 
A' = (d/dt)Jt=ortA. Then 

(.~A) Tr(e-e*-#A) (21) 
= Tr e -e~-,B 

Differentiating (21) at t = 0 and using (5), we obtain 

(A'} = fl(H', A) (22) 

(since (H '}  = 0 by the invariance of Tr). In the classical case the Duhamel 
expectation (H', A), (6), is equal to (H'A).  We will call (22) a local Ward 
identity. The reason for this designation is that in applications there is usually 
a global transformation (e.g., simultaneous rotation of the spins at all lattice 
points) which leaves the Hamiltonian invariant (and this leads to Ward 
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identities) and there is the local transformation (e.g., a rotation of just one 
spin) which leaves the "f ree"  measure (Tr) invariant but not the Hamiltonian 
(and this leads to a local form of the Ward identity). 

We note that (22) leads, via (7) and (8), to 

I(A')] 2 ~< /3(H', H'*)/3((A*A + AA*)/2) = fi((H'*)')((A*A + AA*)/2) 

(23) 

which is Bogoliubov's inequality. {If C is the generator of ~t, we may express 
(23) in the more usual form [([C, A])] ~ ~< ([C, [H, C*]])((A*A + AA*)/2)). 

The equality (22) leads to a simple estimate of the critical temperature 
for classical spins and quantum fields. 

3.1. Classical One-Component Bounded Spins 

We begin with the simple case of one-component bounded spins and 
derive the mean-field bound, which is slightly weaker than Griffiths' third 
inequality, (17) but the method may be generalized to the case of quantum 
unbounded fields. Thus, suppose that r is a real-valued random variable 
with a priori distribution d~o(~) invariant under the transformation ~--> 
- ~ ,  and [as] ~< b with probability one. The Hamiltonian for a finite region 
has the form 

- H  = ~ J~y~j + h ~ ~ (each pair counted once) 
<~,J> 

where h >i 0 and J~j >/ 0 (not necessarily nearest neighbor). We note that in 
general the magnetization is increased by replacing J~j by [J~A so that the 
bound will actually apply in all cases. This follows by comparison inequalities 
(e.g., Refs. 3a and 26). 

Replace H by HQ,) given by 

<i,j> j 
i , i ~ k  

When 2 = 0 the spin ak is decoupled from the other spins; when 2 = 1 it 
is fully coupled. When 2 = 0 there is clearly no spontaneous magnetization 
for the spin ~k, and we now estimate the effect of restoring the coupling. 
Letting (... >~ denote the expectation with respect to H(2), it follows from 
(5) and Griffiths' inequalities (Section 2.1 a) 

d 

J 

~< /3 ~ Jej(%a,ok)A ~< /3 ~ J~,(c, k2~,) (24) 
J J 
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Integrating from h = 0 to h = 1, we find that (24) becomes 

Y 

This formula holds also in the infinite-volume limit. 
For  the Ising model r = + b, and we obtain 

rn(h) <~ too(h) + f iJb2m(h)  (26) 

where m(h) = supk<ek), or = sup~ ZY Jky, and mo(h) is the magnetization 
for a single uncoupled spin. 

I f f i J b  2 < 1, 

1 
m(h) <. 1 - [3Jb 2 mo(h) 

Since too(h) --+ 0 as h -~ 0, it follows that 

m+ - - 0  if / 3 jb  2 < 1 (27) 

where m+ = limh~o re(h). 
For the Ising model (27) is slightly weaker than Griffiths' third in- 

equality. (17) For  a model with arbitrary even single site distribution and 
~ e [ - b ,  +b] the magnetization is bounded by the magnetization of  an 
Ising model with ~ = + b (as follows by a Griffiths' inequality), so that the 
estimate (27) holds in general. However, we may also note that (26) follows 
from. (25) in general by the following result: 

k e m m a  3.1. Let {~} be a set of random variables with even a priori 
distribution dtq(~), [chl ~< b. Let - f i l l  = ZJAaA, where JA >1 0 and gA = 
1-I~A ~. Then <a~2~B> ~< b2@B>. 

Proof. Clearly f (b 2 - ~2)~ d~(e) /> 0 for any positive integer a. In the 
usual way, by expanding the exponential e-B~ and using the factorization of 
the free a priori measure, the lemma follows from this inequality. 

3.2, O n e - C o m p o n e n t  Q u a n t u m  Latt ice Fields 

We may extend the method of Section 3.1 to quantum lattice fields by 
using the GHS inequality (Section 2.1b). As in Section 3.1, we obtain from 
(5) and the GHS inequality (Section 2.4a) 

d 

y 

<~ 2fl /<4(x)a)a<4(x))a 

where we have again used a Griffiths' inequality (for the path space fields ~), 
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and (q~(X)>o is the'expectation for a single uncoupled anharmonic oscillator 
(Schr6dinger particle). Again we obtain 

(~>+ = lim(~>~ = 0 if 2/3~b ~ < 1 (28) 
/z~0 

where b ~ = l im~o(~)~  = ( ~ ) + .  
We will show in Sections 6 and 7 that/3b 2 -+ 0 as/3 -+ 0 and therefore 

at high temperature <~> + = 0. 

3.3. Classical Multicomponent Bounded Spin Models 

We use the local Ward identity (22) together with correlation inequali- 
ties for the v-component spins @ -- 2, 3, 4) to obtain the mean-field bound, 
improving by a factor of two the estimate of Brascamp-Lieb (4) (see also 
Refs. 22 and 42). For  fixed-length spins we obtain almost the mean-field 
bound for arbitrary v. We begin with the case v = 2, 3, 4. 

Thus we consider a~ e ~v with a priori distribution d/zo(l[ch]]) depending 
only on [[e~ll and [[ei]] ~< b with probability one. The Hamiltonian is as in 
Section 2.1. We note that for two-component models, a comparison in- 
equality (8~ shows that the magnetization is increased if J~j is replaced by 
[J~j[, so the bound will apply to arbitrary couplings in the two-component 
case. 

Let ~t denote a rotation by an angle t between the (1) and (2) compo- 
nents of the spin crk. Taking A = o~ z) in Eq. (22), the following equality is 
obtained: 

(cry1)> r~ ~" r /~(e)r~(m~(1) agl)a}2)]) 
t 

Then, supposing the single site distribution satisfies the hypotheses in 
Section 2.1c, d, 

/~ ~ " /  /~ (2)~(2)~(1) \  

Y 

~</3 ~. j~j((~2~)z>(@)> +/3h<(~2~)2> (29) 
r 

By symmetry, <(~)2> = <(a~2~)2> if a = 3 ..... v. Thus again by inequalities 
((cr~2))2> ~< <(@))2>, giving 

~<(.~)~> = (~ - 1 ) < ( ~ ) ~ >  + <(~)~> ~< (~ - 1 ) < ( ~ f 0 ~ >  + <(@~)~> 

With m(h) = supk(@~>, J = supk ~ Jkj, we obtain from (29) 

re(h) <<. (/3jb2/v)m(h) +/3h(b2/v) (30) 
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which implies 

and so 

m +  

1 /3b2 h 
m(h) <. 1 - (/3Jb~/~) 

- l imm(h)  = 0  if /3Jb2/v < 1, v =  2, 3 ,4  (31) 
/~i0 

Without any assumptions concerning correlation inequalities we may obtain 
an estimate valid for all v if we considerfixed-length spins, Ila~ll = b. From 
the local Ward identities we obtain, using Griffiths' inequality 2. la  (which is 
true for all v) 

(@)) <~ /3 ~ j~j((r +/3h((a~2,)2) (32) 
J 

By symmetry 

( L )  ( L )  f f  - 1)(~ ~)) ~</3 ~. J ;y  ( ~ " ~ ) ~ 7  ~ + / 3 h  (~)~  

Since (@))2 + ~2~ ( ~ ) 2  = b 2 we obtain 

(~ - 1)(~ ' )  </3 ~J~,{b~(~')  - ((,g~')~?~)) +/3h(b ~ - ((~g~)~)} 
J 

<~ /3 E JkJb2(cr}l') + fib2h 
J 

This leads to 

(v - 1)re(h) ~< /3Jb2m(h) +/3hb 2 
Thus 

m+ = l imm(h)  = 0  if [/3Jb2/(v- 1)] < 1 
h~o 

Note that (33) differs from (31) by the replacement v --~ v - 1. 

(33) 

3.4. Mu l t icomponent  Quantum Lattice Fields 

For  certain local potentials V(ll~bll 2) absence of spontaneous field 
expectation follows from the same result for one-component fields using 
correlation inequalities. (2~ More generally we may proceed by applying 
inequalities to the Duhamel function by the method of Section 3.3. 

As in Section 3.3 we obtain from (22) for v = 2, 3, 4 

(~(1)(x)) =/3 ~ Jx~(q~(2)(x), [4r - ~a)(x)~(~)(y)]) 
y 

+/3h(~(~'(x), ~(~'(x)) 

<<" /3 E Jx~(~(2)(x)e)(4~(1)(Y)) +/3h((~ 
v 

where we have used the inequalities of  Section 2.4. 
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Since ~(~(2~(x)2)-+ 0 as /3-+ 0 by the results of  Sections 6 and 7 we 
m a y  again show the absence of  spontaneous  field expectat ion at  high enough 
tempera tures  as in Section 3.2. 

3.5. Upper Bound on the Critical Temperature  for 
Bounded Classical Spins 

We summar ize  here the results of  Sections 3.1 and 3.3 for  classical 
bounded  spins. 

Theorem 3.1.  Let  (r~ ~ Ev be v-component  classical spins, II ,ll -< b. 
The  single site distr ibution satisfies: 

(a) v = 1 ; d/~0 is arbi t rary  (even). 
(b) v -- 2; d/z o is a limit of  measures  of  the fo rm exp[ - V([I ~ H 2)] de(1) de(2), 

V(f) convex. 
(c) v = 3, 4; d/zo is a limit o f  measures  of  the fo rm [ e x p ( -  ai[ G II + b II II 5)] 

x I-i~'=l d ~(~). 
(d) v i> 5; d~o is fixed length,  (11 ]12 - b2) I-IT=1 

The  Hami l ton i an  has the fo rm - H  = ~w,r~ J~Y~%' + h ~, ~r,, J~j 1> 0, 
h /> 0 (we suppose J ,  = 0 for  all i). Let  J = sup, ~j J~j. Then the spon- 
taneous magnet iza t ion  is zero if 

w h e r e c ~ =  l i f v =  1 , 2 , 3 , 4 a n d c ~ = v / ( v -  1) f o r v > /  5. 

I f  we combine  Theo rem 3.1 with F K G  inequalities for  v = 1 and 
generalized Griffiths'  inequalities for  v = 2 as in Refs. 3a and  27, we obtain 
the following result:  

Corollary 3.1.  With  the hypothesis  of  Theo rem 3.1, if /3 < v / f b  z, 
then: 

(a) v = 1 : There  is a unique equil ibrium state. 
(b) v = 2: There  is a unique phase. 

4. EXISTENCE OF CRITICAL LENGTH 

Here  we will use the estimates of  Section 3 together  with the me thod  of  
infrared bounds  (11) to prove  the existence of  a critical length for  certain 
(mul t icomponent )  classical systems. Consider  a one-dimensional  ferro- 
magnet ic  Ising model  with nearest  neighbor  interactions on the lattice 7/. 
There  is no spontaneous  magnet iza t ion  and  indeed a unique equil ibrium 
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state by the transfer matrix formalism. Consider now a two-dimensional 
Ising model, infinite in one dimension and finite in the other with length 4 L 
and periodic boundary conditions. We denote this lattice by 7/ x L. For  any 
given L the system is effectively one-dimensional and again by the transfer 
matrix there is no spontaneous magnetization. However, for L = oo the 
lattice is 7/2 and for sufficiently large fi the spontaneous magnetization is 
nonzero. Thus in this case there is no critical length for spontaneous magnet- 
ization. If  we now consider an infinite, two-dimensional lattice with a finite 
periodic third dimension so that the lattice is 7/2 x L, then there is a 
long-range order for fi large enough if L = 1 (the system is then strictly 
two-dimensional) and therefore also for any L, 1 ~< L ~< oo, by Griffiths' in- 
equalities. One would expect that if fi is chosen so that tic(3) < fl < tic(2), 5 
there would be a critical length. (Actually we do not consider this case; our 
discussion applies to 77 = x L, s I> 3.) 

Consider now a one-dimensional, nearest neighbor, ferromagnetic, 
fixed-length rotator model on the lattice 7/. Again by the transfer matrix 
formalism there is no spontaneous magnetization and the same is true for 
the lattice Z x L. In fact on the two-dimensional lattice 7/2 there is still no 
spontaneous magnetization by Mermin's theorem (28) and the theorem ap- 
plies also to the lattice 7/2 x L. However, for the three-dimensional lattice 
2[ a there is spontaneous magnetization. (11) Here also, then, there is no critical 
length. However, for the lattice 7/3 X L, one would expect that if/3c(4) < 
]3 < tic(3) there would be a critical length. 

Actually with periodic boundary conditions we cannot prove mono- 
tonicity of the spontaneous magnetization in L, and so we cannot show 
that if the spontaneous magnetization is nonzero for L = L1 it is nonzero 
for all L > L1. Instead we show there are lengths L1 ~< L2 such that for all 
L ~< L1 there is no spontaneous magnetization and for all L > L2 there is 
spontaneous magnetization (presumably L1 = L2). For  nearest neighbor 
interactions we only know that L~ /> 1. 

We consider then the lattice 7/" x L, s i> 3, with nearest neighbor ferro- 
magnetic pair interactions and fixed-length spins (/all = b). The Hamiltonian 
is H = -J~<x,y> ~x'% or equivalently H = (J/2) ~<x,~> li~x - %1 2, where 
(x, y)  runs through all nearest neighbor pairs, each pair counted once. The 
periodic rectangular lattice A is 

A = V x L = { x  = (Xo, X l  . . . . .  x=) = (Xo, X):X~ = n~,n~ = 0,1 ..... L ~ -  1} 

with L~ the length in direction ~ and L = Lo. The dual lattice A* is 

A* = { p  = (Po, Pz . . . . .  P=} = (Po, P): P~ = (2~r/L~)n~, n~ = O, 1,. . . ,  L~  - 1} 

L is the number of copies of Z, and is an integer. 
5/~(s) denotes the critical temperature for the lattice 77=. 
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Let Ap~ = 2rr[Lr Ap = FI~=o Ap~ = (2,0S/IA[, Ap = l~g=l &p., d = s + 1, 
[A] = FI~=o L~. The infrared bound of FSS (11) is 

(~)(") 1 p~oAPO 1 ~ (a,, ~y ) = ~ ~ Ap{exp[ip.(y - x)]}pA(po, P) (34) 

the function pA(P0, P) satisfying the bound 

1 1 
0 <<. PA(Po, P) ~< 2/3-'-)(1 - cospo) + Z~=I (1 - cosp,)  (35) 

We now take the limit V 7 77L Away from (Po, P) = (0, 0) the sum in (34) 
converges to the Riemann integral and, assuming no long-range order [no 
8(P) 3Po contribution], Eqs. (34) and (35) imply 

1 l~apo 1 fo 1 
<(~<.))2) ~< 2/3---d2--~ ~ - ~  .-<p~-<2= d * p .  (1 - cospo) + ~ = 1  (1 - cosp~) 

Summing over u, we obtain 

b = <lr xll > 

1 1 
fo d~P 1 

V 

~o (1 cosp0) + Y~,=I (1 cosp,)  
(36) 

(Note that for s -- 1, 2, the integral with P0 = 0 diverges). For  s >1 3 the 
integral in (36) is a continuous function ofpo and it follows that for L -+ oo 
the right-hand side of (36) converges to (v/2/3J)Is, where 

fo 1 Is = (2zr) -s  dSP Y~=~ (1 - cosp,)  
~ pa <~ 21Z 

If/3 is large enough so that 
( v /2M)Is  < b 2 (37) 

we obtain a contradiction with (36) for L large enough. Thus (37) implies the 
existence of  Lr such that for L > Lo there is long-range order (and a non- 
zero spontaneous magnetization). To establish the existence of a critical 
length we must show that at 1east for L = 1 there is no spontaneous mag- 
netization. This  is accomplished using the bounds of Section 3. From these 
it follows that if 

(v/2Jb2)Is < 18 < v l ~ b 2 a  (38) 

then for that value of/3 there exists a critical length. For  an s-dimensional 
lattice with nearest neighbor interactions J = 2sJ  since there are 2s nearest 
neighbors. We must thus establish the bound Is < (d - 1 ) - ~  -~. In Section 
5 we prove Is < (d - l) -1 for all d >1 4; thus we have the following result: 

T h e o r e m  4.1. There exists a critical length for nearest neighbor, 
ferromagnetic, pair-interacting, fixed-length spins on the lattice )78 x L for 
s i> 3 if the number of components v = l, 2, 3, 4 or if v is sufficiently large 
[so that v(v - 1) -1 is close enough to 1]. 
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Note that Eq. (37) shows ( ~  

2Jb 2 1 
Tc >1 --'k--v-~a (39) 

where Tc is the critical temperature for spontaneous magnetization on the 
lattice Z a. 

5. ON E S T I M A T I N G  LATTICE GREEN'S  F U N C T I O N S  

We develop a procedure which is useful for getting sharp estimates for 
the numbers (d >/ 3) 

if?f? Ia = ~ "" dr ... dr (1 - cos 4,) (40) 

I3 has been calculated exactly in Ref. 40, but for Ia, d >~ 4, little seems to be 
known beyond DLS. r A direct numerical computation of I~ is hampered by 
the fact of numerical instability and even fo r /4  a computer calculation is 
difficult. 6 

We start by noting that for d/> 3 

f; Ie = e - a t f ( t )  a dt  (41) 

where 

1 (2~ ~. (t/2)2~ ~.  (t/2)2. (22) 
f ( t )  = 2-~J0 de e t~176162 = = (42) 0 z-, (n!)2 oZr , (2n)! 

From this we get 

1 " 

which by Vandermonde's identity becomes 

f ( t )  = = 
0 

We rewrite f ( t )  2 as 

f ( t ) 2  N" (2022 
= o z-, (2n + 1)! Cn (44) 

where C. = (2n + 1)!(2n)!/(2"n!)  4, Co = 1, C1 = 3/4, C2 = 45/64 ..... Clearly 
C.+1 < C. VnE IN and by applying Stirling's formula one easily finds 
lim.~ ~ C~ = 2/7r. 

D e f i n i t i o n .  An nth-order approximation to f ( t )  2 is a power series in 
which all Ck, k >/n, are replaced by C. (upper bound) or all Ck, k /> n, are 
replaced by 2/~r (lower bound). 

6 The authors are indebted to F. Driessler for a computer study of/4. 
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So, in first order we have 

(1 
and in second order 

1 -  + - 5 + - ~ r  2t 

1 3 sinh 2t 
< f ( t )2  < 7~ + 74 2----7-- 

19 1 t2 45 sinh 2t 
< f ( t )2  < -64 + ~ + 6---4 2t " 

Since all integrals arising f rom a substitution f o r f  2 in (41) for even d can be 
carried out  explicitly, we have here a method for actually calculating Ia, 
d even. For  14 we then get in first order 0.3005 < I~ < 0.316 ( <  1/3) and in 
second order 0.3069 < 14 < 0.311. In  first order we obtain /6 < 0.18652 
( <  1/5). Writ ing 15 <~ (I~I6) 112, we immediately ge t / 5  ~< 0.241 ( <  1/4). 

As regards a global bound,  we now prove the following result: 

Theorem 5.1. Ford~> 4 , ( d -  1/2) -1 < la < [ d -  ~(d)] -1 < ( d -  1) -~, 
where c<(d) -+  1/2 for d - +  oo. 

Proof. (a) Lower  bound :  F r o m  (41) we obtain 7 

dIa = dx e- Xf(x/d)a (45) 

Integrat ing by parts twice, we have 

dla = 1 + dx e Y~Tl) J ~ l }  (46) 

1 + f o  " - J d - l " [ x ' a - z " , [ x \ 2  1 (x )a -~  , , ( x ) )  
= d x e  ~-----~-Jt~l ) J t~iJ + ~l f ~1 f ~t 

= 1 +  " d x e -  

2 x (  d - 1 , [ x \ a - 2 [ f ' ( x / d ) ] 2  

1 i i /x\a-~[f"(xid-~)--f"(O)]~> + -~f \3] I ( z / ) '  ] )  

1 l f o~ { ~ _ !  [1] 2 1 3 }  >1 1 + ~ + 7l dxx~e-~ + ~ 

1 l d - 1  31 d 
= 1 + ~-~ + ~ d-----g- + ~ )'5 > d - - ~ -  -~ (47) 

7 We remark that f(xld) alx = [(1]27r) ~2o~ dO e Catx~c~ o]as~ = [le~176 0t]~sa is an L~ norm with 
respect to the probability measure dO/2~r. It follows that f(x/d) a monotone decreases 
as dincreases, converging to 1 [sincef'(0) = 0]. Therefore dla decreases to 1 as d /  oo. 
This is a result of Ref. 6. 
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In  obtaining (47) we have u s e d f ( t )  /> 1, t - l f ' ( t )  >t 1/2, t -2[ f " ( t )  - f" (0)]  >/ 
3/16, and f " (0 )  = 1/2, all o f  which follow f rom (42) since all coefficients in 
the power  series for  f are positive. 

(b) Uppe r  bound :  I t  follows f rom (42) tha t  t -a f ' ( t )<~ (1/2) f ( t ) .  
Substi tuting this into (46) gives 

dla <~ 1 + ~-~ dx x e - ' f  (48) 

Since f ( x / d )  a is m o n o t o n e  decreasing as d increases (see foo tnote  7), we 
have 

alia <~ 1 + ~-~ dx x e - X f  (49) 

for  any do ~< d. We have already shown Ia < ( d -  1) -1 for  d = 4, 5, 6. 
For  d > 6 we take do = 6 and obtain  

fo 1 dx x e - X f  < 1 + ~-~-f-~ < d dla <<- l + ~~ 

where we have substi tuted the first-order upper  bound  f o r f ( t )  2. 
(c) Finally we note  that  

fo fo dx x e -  ",a dx x e -  x = 1 as d x 

So for  d />  6 if ~(d) = � 8 9  dx xe -~ f ( x /d )  a we have f rom (48) 

h ~< ~ 1 + < d - ~(d-----~ and a(d) --+ ~ for  d--+ oo 

The upper  bound  for  Ia given in Theo rem 5.1, together  with Theorem 3.1 
and Eq. (39), gives the following bounds  for  the critical t empera ture  of  
classical fixed-length spins interacting via nearest  neighbor  fer romagnet ic  
pair  interactions on the lattice 7/d. 

T h e o r e m  5.2. Let  ~ ~ R ~ be v -component  classical spins of  fixed 
length [la~]] = b on the lattice Z a with Hami l ton ian  - H  = J~<~.s> a~.ej + 
h ~ o'~ ~ with J / >  0 and ( i , j )  running over  all nearest  neighbor  pairs. The 
critical t empera ture  T~ for  spontaneous  magnet iza t ion  satisfies 

Jb2 d - I Jb2 d 
< To ~< 2 c~ (d>~ 4) 2 k  v T ~  

where k is Bol tzmann 's  constant  and ~ = 1 i f v  = 1, 2, 3, 4; ~ = v(v - 1) -1 
if  v /> 5. For  d - 4, d - 1 in the lhs m a y  be replaced by 3.2144. Fo r  d = 3, 
d - 1 in the lhs must  be replaced by 1.978. (z1'4~ 
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In particular for v = 1, 2, 3, 4, T,/d--+a_~ ~ T~(mean field)/d -= 2Jb2/kv,  

extending to v = 2, 3, 4 the observation of Ref. 6 for v = 1. 

6. A B S E N C E  OF S Y M M E T R Y  B R E A K I N G  FOR Q U A N T U M  
LATTICE FIELDS AT H IGH T E M P E R A T U R E  

Spontaneous symmetry breaking does occur at sufficiently low tempera- 
ture for quantum lattice fields on the lattice 7/~, s i> 3, by infrared bounds, (1~ 
and for one-component fields for s = 2, by the Peierls argument. ~1~ We 
review these arguments in Section 9. Using correlation inequalities (Section 2) 
and local Ward identities (Section 3), we will show that spontaneous mag- 
netization (field expectation) does not occur at sufficiently high temperature 
(/3 small enough). Indeed, as pointed out in Sections 3.2 and 3.4, the estimate 
/3(4(x) 2) e~-2-d > 0 suffices. 

The high-temperature behavior of quantum fields (or even a Schr6- 
dinger particle) is somewhat subtle since the kinetic energy diverges, as do 
the correlation functions (even for the free field). Renormalizations have to 
be done (depending on the interaction) in order to have uniformly bounded 
correlation functions for all/3. This is in contrast to the usual lattice spin 
systems where the high-temperature limit is trivial (there is no kinetic energy 
in this case). 

Consider a one-component lattice field ~(x) with local potential 

n 

V(q~) = ~ a k q ~  2 ~ -  hq~, n /> 2, h /> 0, a~ > 0, a~ 1> 0 f o r k / >  2 

(50) 

on a finite rectangular sublattice A of 2~ s with periodic boundary conditions 
and translation-invariant pair interaction J ( x ,  y )  = J ( x  - y ) :  

e = "s + V(4(x)) + �89 "f, Yxy[4(x) -  (y)P (51) 
x ~ A  l~ai rs  

Expectations are given by (A) = T r ( e - B ~ A ) / T r ( e - ~ H ) .  The Peierls-Bogoliu- 
boy inequality (aa) gives, 8 

[ ~  )~A~]  LTrFTr exp( -  ~/7)]l , ,~ 'exp(_ ? - ~ J  exp[/3e(f(x)2")] = exp /3e ~A 4(x)2" ~< (52) 

where /7 has the form (51) with V as in Eq. (50) but with a, replaced by 
a,  - e. We estimate the right-hand side of (52) in terms of single uncoupled 
fields by removing the couplings by means of the operator inequalities 

0 < [4(x) - 4(y)] 2 ~< 214(x) 2 + 4(y) 21 

8 If formulated in terms of path space expectations eq. (6.3) easily follows from Jensen's 
inequality. 
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which imply 

where 

>-- 2 &,(x), . <. u l,(x) 
x ~ A  x ~ A  

p/~.(x) = �89 = + JT(4(x)) 

H~dx) = ~ ( x )  = + V(4(x)) + J4(x) ~ = �89 = + P(4(x) )  

d = ~ 4 .  

Then Eq. (52) gives 

exp[/3~(~(x)2")] ~< 
Tr exp(-/3/7m) 
Tr exp(-/3Hm) 

(53) 

We conclude that/3(~(x) 2~) is uniformly bounded as/3 -+ 0 (and uniformly in 
the volume A) if the right-hand side of (53) is uniformly bounded. Then 
using (~(x)~)" ~ (~(x) 2") (by a Griffiths inequality) we have fll/"(~(x)2) ~< C 
as /3---> 0 and thus/3(~(x) 2) --> 0, which is the desired result. (Clearly the 
same discussion applies to multicomponent fields.) 

To bound the right-hand side of (53) we show in Section 7 that its limit 
as/3 -+ 0 is classical: 

. Tr exp(-/3/-Ta, ) ~irno } dx exp[-/317(x)] ( a. ~1/(2.) l m ~  = = 
a-~o Tr exp(-/3Hm) dx exp[-/31?(x)] \ a .  - ~7 

7. THE H I G H - T E M P E R A T U R E  L IMIT  IS CLASSICAL 

For finitely many degrees of freedom we show that Tr exp{-/3[�89 2 + V(q)]} 
approaches its classical value as/3 -+ 0. 9 

Using the representation (10) and making the change of variables 
y = ~31/(2~)x, we have 

Tr exp{-/3[~r 2 + V(q)]} 

~~176 ay (2, 5)-11=5- t1~2"~ 
, r  

J ; / T  

9 The limit fl -+ 0 should not be confused with the related h ~ 0 limit. 
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Since r(t) is continuous along each path (Appendix B), the integral in the 
exponential converges to a~y 2n as p --~ 0 for each path. Then 

since exp{-J'z o dt [...]} is bounded uniformly in/3. To obtain the limit/3 -~ 0 
for the integral f~_ = dy ('")T we use Lebesgue-dominated convergence. By 
Jensen's inequality 

f2 <~ dt (exp{-  ['"]})r 

= exp - = a~fll-k/~(y +/31/2+l/~2n)r(0))z~ 

- h,l-l"2~)(y + /31/2+l/'2~)r(O))])) 

the last equality following from the translation invariance of the path space. 
Then 

((fo )) exp - dt [...] <<. C(exp{-a~' (y  +/3112+ll(2n)r(O))2n}) r 

for some a. '  < a~ (a~' is independent of/3). Thus 

( e x p  ( -~ol  dt [ ' " ] ) )  

<~ C' dr [exp(-�89 exp[ -a~ ' (y  +/31/2§ 1 

For/3 ~< 1, 

exp{-�89 2 - a~'(y +/3112+1/(2'~)r)2'~} 

~< x(sign y = sign r) exp(- �89 2 - a~'y 2~) 

+ x(sign y = - s i g n  r)x(lYl ~ 21rl) exp(- �89 2) 

+ x(sign y = - s i g n  r)x(ly[ >/2r) e x p ( -  [�89 2 + a~'y~/2~l} 
(54) 

where x(P) denotes the characteristic function of the set determined by the 
property P. Clearly the integral over r of the right-hand side of (54) (which 
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is independent  of/?) is an element of Ll(dy). We have thus proved the following 
result: 

Theorem 7.1. 

lira/3 a/2+~/(2~ Tr exp(-fl[�89 2 + V(q)]} = (2~r) -1/2 dy e x p ( - a ~ y  2~) 

where a~q ~ is the term with the highest exponent in the polynomial  V(q). 
Note  that  

fi~/2+ ~/(~") l f dp dx exp(-fiI~ + V(x)]} -;~ ~ f dy exp(-a~y 2") 

so that  we may  conclude 

lim Tr exp {-fl[1,r2 + V(q)]} = 1 

a-.o (1/2~r)f dp dx exp{-fi[ �89 2 + V(x)]} 

and 

" Trexp{_fl[�89 2 + /7(q)]} fdyexp[-(a. - .)y2.] ( a~ ]~,(~, 
lm - - ~  ----- = 

a-o  Tr exp{- f i [~ r  + /2(q)]} f dy e x p ( - a ~ y  2~) \a~ - e/ 

A discussion of  the fl -+  0 limit o f  path integrals in connect ion with the 
behavior  o f  high-energy eigenvalues can be found in Ref. 44. 

8. EQUIPARTIT ION B O U N D  ON THE ENERGY DENSITY 

The bound  fl(~(x) 2") <~ C derived in Sections 6 and 7 is essentially 
equivalent to an equiparti t ion bound  lo 

( ~ A / I A I )  ,< CkT (55) 

for  large T, uniformly in A. In  other words, the energy per lattice site (i.e., 
per degree o f  freedom) is bounded  by a multiple o f  kT. 

To derive (55) we first recall the virial theorem. Let U, be the unitary 
opera tor  taking r -~  c~r ~r(x) -+  (1 la)~r(x). We have 

~ = v ~ v :  1 = ~ ~,  + v ( ,~ (x ) )  + ~2 ~,  : x . [ ~ ( x )  - ~ ( y ) p  
p a i r s  

Since Tr(e-Bn=) = Tr(e -Bu) we have, differentiating at c~ = 1,11 

(56) 

10 This bound should not be confused with the infrared bound of Refs. 11 and 37, which 
applies only to the coupling term �89 ~pa~ J~[~(x) - ,k(y)l 2 and not to the local 
terms. 

ix It is seen that the virial theorem is an example of a "local Ward identity" as defined 
in Section 3. 
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Using the equality (56), we may estimate fl@(x) 2) in terms of fl(~(x)2"), 
and of course fl(V(~(x))) and fi([~(x) - ~(y)12) can also be estimated in 
terms of fi(~(x)2~). Thus the estimates of Sections 6 and 7 lead, via the virial 
theorem, to the equipartition bound (55). 

9. S P O N T A N E O U S  S Y M M E T R Y  B R E A K I N G  FOR 
QUANTUM LATTICE FIELDS 

We briefly review here the arguments leading to the existence of spon- 
taneous symmetry breaking for multicomponent quantum lattice fields at 
nonzero temperature if the space dimension s t> 3 (infrared bounds) and 
for one-component fields at nonzero temperature for s = 2 (Peierls argument). 

9.1. Spontaneous  S y m m e t r y  Breaking for  M u l t i c o m p o n e n t  
Fields, s 1> 3 

The lattice approximation to the path space gives a measure of the form 

e-~e~--~d~ 
where 

(n.n. = nearest neighbor) and where, if 86 denotes the lattice spacing in the 
direction (a = 0, 1 ..... s), A = l-I~ 86 and 8~j is the 36 associated with the 

direction of the bond between the pair i, j. The infrared bound becomes 
(see Refs. 10 and 37) 

where 

1 1 1 1 
[A--] <I~v[2) ~< 2 (2~r) a ~(p) 

s 

4 p )  = 8 ; 2 ( 1  - cosp, 86), 
Cr 

1 

p ~ A ~  

Taking the limit 30 --> 0, we obtain the path space for the quantum lattice 
field. Then E(p) takes the form (1/2)po 2 + es(p) and (recall that in the fl 
direction the length is fl)Po = (2rr/fi)n, es(p) = ~ = 1  (1 - cos p~86). Taking 
the limit V S  7/~ and assuming no long-range order, we obtain 

~o 1 (57) 1 1 A 1 d~ p �89 2 + ,~(P) 

Note that, as fi -+ 0% the right-hand side of (57) approaches (s >t 3) 

1 1 ~ j  1 fo d ~ P [ � 8 9  (58) 2 s apo ~ ,,=~.2,~,o, 
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We may obtain a contradiction to (57) (thereby proving the existence of  
long-range order) by showing that l ime~<4x  2) > L 

A lower bound for <~2)  can be obtained from Bogoliubov's inequality 

I<[C, AJ)[ 2 ~< fl<[C +, [H, C]])<(AA + + A +A)/2) (59) 

taking A = 4x, C = ~-~, 

' ~  17T 2 H = z ~ x  + v ( G ) + }  ~ ~[(G-4.)/~] ~ 
x n.n. pairs 

(n.n. = nearest neighbor) where for simplicity we have taken ~ = 3, 
= 1 ..... s. We obtain 

1 ~< /3<V"(4x) + 2s3~-2)<4(x)2) (60) 

If  V(4) = h44 - ~42, this gives 

<4(x)~>/> ~ + L\12a/ + I-~U~J (61) 

where ~' = ~ - s3 ~-2. (Note that as/~ ---> 0 the lower bound goes like fl-z/2. 
The upper bound (Section 6) is also of this form.) In particular, <4(x) 2) /> 
a'/6A for all/~. 

Choosing A small enough or a large enough so that a'/6A > I [see Eq. 
(58)], it follows that there exists a critical/3~ such that for all /~ > /3~ the 
quantum lattice field has long-range order. 

The same methods work for v-component fields. For example, if V = 
hll+il ~ - all+[I 2, taking C = ~r(~>(x), A = q~(~>(x) in Eq. (59) gives 

1~< /3<  12A4~>(x)2 + 4A,~=a ~ 4(r 2 a ' )  <4'~'(x)2> 

By symmetry (we have no external field) <4(~)(x)2) has the same value for 
all ~. Then 

<4(~'(x)2> ~> (8 + 4u)A + ~(8 + 4v)A + (8 + 2~v)A/3J 

The infrared bound (57) is now true for <4(~>(x) 2) and thus the same method 
as previously used applies in the u-component case. 

9.2. Symmetry Breaking for One-Component  Fields (s = 2) 

The two-dimensional Peierls argument is used in the path space formal- 
ism. Let ~b(x) = (1//3)fo ~ dt q~(t, x). We follow the general discussion in Ref. 
10. Define the characteristic functions X~(x) = char. fcn. of +~b(x) 1> 0: 

x+(x) = x(~(x)/> J) + x(o -< ~(x) < a') = x~(x) + x~>(x) 

x_(x) = x(r ~< - J )  + x ( - J  < ~(x) < o) = xe>(x) + xe~(x) 
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Then 

x + (x)x-(x ' )  = x~(x)x~!~(x ') + x~(x)x~-~(x ') 

+ x~(x)x~)(x  ') + x~'(x)x~)(x ') 
4 

= ~, xXx, x') 
r162 

The key ingredient in the Peierls argument is the estimate of a contour C 
which separates points where ~b(x) > 0 from points where ~b(x) < O: 

Using the chessboard estimate, (~~ this probability is converted to an 
estimate of a pressure: 

Prob(C) ~< ~ ~ ~ b )  
r = 3 . , 2 , 3 , 4  b~C r 

where b is a pair (x, x') in the reduced contour C~. The pressures 5~ are 
estimated exactly as in the P(~)2 models. (z~ 

10. IS lNG M O D E L  W I T H  T R A N S V E R S E  FIELD 

As discussed in Section 2.5, the Ising model with transverse field is a 
quantum system with path space equal to the continuum limit of a classical 
Ising model. We consider an anisotropic nearest neighbor model with finite- 
volume Hamittonian for the region V c Z s 

iffg p a i r s  t e g  ]~ge 
i d e V  

where wj are determined by the boundary condition in V c (as discussed in 
Section 2.5) and 

{0J= if i, j is a nearest neighbor pair in the a direction 
"/~J = if i, j is not a nearest neighbor pair 

and a, J ,  >i O. 

10.1. Ground Sta te  of  the  Q u a n t u m  System 

With (+ )  boundary conditions % = + 1 for all j ~ V c. The correspond- 
ing Hamiltonian is Hv(+) with ground state s The existence of dy- 
namical instability (spontaneous magnetization) is indicated by 

lim (~v(+),  aIf2v(+)) = M v a 0 (63) 
VAZs 
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To estimate M we use results from the classical ][sing model via the 
path space. (An exact solution of the quantum system in the one-dimensional 
case can be constructed by a transformation to fermion variables as in the 
two dimensional classical case. c3~)) 

Consider the path space with mesh 3, which is a nearest neighbor Ising 
model with couplings Kr = 8J~ in the space direction c~, and /4o = (a3)* 
in the fi directiofl (Section 2.5). We take the path space with length/3 in the 
fl direction with (+ )  boundary conditions: ~(fl/2) = ~( - f l /2)  = + 1 Vi ~ V. 

Let <-..)~v+(3) denote the expectation with respect to this path space, 
which has ( + )  boundary conditions outside all its boundaries. As discussed 
in Section 2.5, 

lim@~(O))ev~.(3) = <o = +le-(BI2)~v(+)~e-(Bl~mv(+)[(~, = + )  (64) 

which converges as fi-+ ~ to 

lira lim@,(O))ev + (3) = (f~v(+), a(f~v(+)) (65) 
/ ~ c e  6 ~ 0  

Thus 

lim lim l im<~,(0)>~v+(3) = M (66) 
V f ~ S  B~o~ 6--*0 

Equation (66) determines the spontaneous magnetization M of the quantum 
system in terms of classical Ising expectations. 

By the Griffiths inequalities (Section 2. t a) 

Thus 

<,~,(O))~v+(3)",-~ M~+~)(8) as fl,~ 0% V /  Y_~ (67) 

O~(0))~v~_(3) >t M~+~'(8) for all fl, V (68) 

where M~+*)(8) is the spontaneous magnetization for the infinite-volume, 
(s + 1)-dimensional Ising model with couplings Ko, K~ as above. By a 
Griffiths inequality 

M~+*)(3) >/ M~)(3) (69) 

where we have removed all couplings in the space directions except in the 
direction where K~ is maximum. Thus M~)(3) is the spontaneous magnetiza- 
tion for the two-dimensional Ising model with couplings Ko = (a3)* and 
/s = 3Jm~x and is given by 

= [a ! .l x(8)~j (70) 
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if x(8) > 1, where x(3) = sinh 2Ko sinh 2Kmax. (See, for example, Ref. 34.) 
Note that in the limit 3 ~ 0, 

x(3) -+ Jmax/a (71) 

Combining (66) and (68)-(71) we have immediately 

[, 
if a < Jm~x. We observe that for the one-dimensional quantum system, the 
exact solution <al) gives equality in (72). 

To obtain results concerning the absence of spontaneous magnetization, 
we may apply Fisher's estimates for the Ising model, c9) Using estimates for 
self-avoiding walks, Fisher shows that for an Ising model with couplings 
Ko, K1 ..... Ks the magnetization of the system in an external field h Y. cr~ 
satisfies 

l + x  2 
M(h) <~ (tanh h) 1 - x - 2(1 + x)y <~ (tanh h) 1 - x - 4y (73) 

where x -- tanh K0 = e- 2~a, y = y~ = 1 tanh K, = ~ =  1 tanh 3J,. Thus if 
a > 2 Y~ = ~ J , ,  there exists a e and 3o such that for all 3 < 3o, 

M(h, 3) ~< e tanh h (74) 

To apply (74) to the quantum system we take Dirichlet boundary con- 
ditions for the quantum system outside V and also for the path space at 
+ fl/2. This path space can also be regarded as arising from a certain boun- 

dary condition at +/3/2 as discussed in Section 2.5. Again as /3--~ oo the 
expectations will converge to ground state expectations as in (65) [see 
Eq. (20)]. 

Thus we obtain 

(~j(0))~v;~(3) ~< e tanh h V3 < 30 

and therefore taking the limit 3 --+ 0 and then fl -+ 0% we obtain 

(~2v D, ~j~crv D) ~< e tanh h 

which gives 

lim (~2v D, ~7~v D) ~< e tanh h (75) 
V f ~  s 

which shows that the spontaneous magnetization for the Dirichlet state is 
zero if a > 2 ~ =  ~ J~. A standard convexity argument shows that the 
spontaneous magnetization is zero for all translation-invariant boundary 
conditions [in particular for ( + )  boundary conditions]. A discussion is 
given in Appendix C. 
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Fisher's estimate is not optimal. For  the two-dimensional Ising model<34~ 

<~o~.> <<- e - " ~  

where 

tanh 3a a 
E = 2(/s - K~) = In tanh 3J~--~ In J 

and ao, a~ are two spins separated in the space direction. This shows that the 
one-dimensional quantum model has exponential clustering if a > J. (For 
the exact solution see Ref. 31.) 

10.2. Critical Temperature for the s-Dimensional 
Quantum System, s 1> 2 

We discuss here the existence of  a critical temperature for the s-dimen- 
sional quantum system, s /> 2, which then implies the existence of  a critical 
length for the (s + 1)'-dimensional continuum Ising model. 

Note first that at high enough temperature there is no spontaneous 
magnetization. This follows, since as a decreases, K0 = (a3)* increases, and 
so by the Griffiths inequalities the spontaneous magnetization for the quan- 
tum model at temperature fl is smaller than the spontaneous magnetization 
with a = 0, which is just the classical Ising model. The classical Ising model 
has zero spontaneous magnetization at high temperature by Griffiths' third 
inequality (see Section 3). Thus the existence of a critical temperature follows 
from the existence of a nonzero spontaneous magnetization for large ft. 

For  s = 2, Ginibre has shown ~14~ (using a Peierls' argument with a 
different path space based on an alternative form of the Trotter product 
formula) that the two-dimensional quantum system does have a nonzero 
spontaneous magnetization for fl large enough provided that a is small 
enough. By Griffiths inequalities, this implies the same result in higher 
dimensions. On the other hand, for s >t 3 we may obtain an estimate for the 
critical temperature based on the infrared bounds (11~ as discussed in Ref. 6. 

Consider the quantum system in zero external field in a rectangular 
region with periodic boundary conditions and take J~ = J for all ~ = 1 ..... s. 
The Bruch-Falk inequality (see, for example, Ref. 6) gives a lower bound 
for the Duhamel two-point function: 

f �89 -~-A--~7")] <<. �89 + AA +) 

wheref (x )  is the function defined by 

xf(x) = [tanh g(x)] 2 
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and g(x) is the inverse function of x = y tanh y: y = g(x) (for x, y >i 0). 
Note that x f (x )  takes any value between 0 and 1, x f ( x ) - +  1 as x ~ m. 
Taking A = ej~ gives 

f(�88 <~ (%:, %0 

Since f ( x )  is monotone decreasing in x, <8) and 0 ~< (~F)  ~ 1, it follows that 

f(�88 <~ (%~, ors0 (76) 

From infrared bounds (which follow because of the Ising path space), 
assuming no long-range order, 

fo 1 I~ (77) 1 1 d~P Y~=I (1 cosp=) = 2/3j "< 

Letting x = [3a/4 and combining (76) with (77), we obtain 

x f (x )  <~ (a/J)P/8 (78) 

Now if (a/J)P/8 < 1 there exists an x~, 0 < x~ < o% such that 

x f (x )  > (a/J)P/8 for all x > x~ 

implying long-range order for all/3 > / ~ .  For s = 3, I~ ~ �89 and this result 
would predict that the ground state would become degenerate if a/J < 16 
(whereas we know from Section 10.1 that the ground state is degenerate if 
a/J  < 1). 

A P P E N D I X  A. C O R R E L A T I O N  I N E Q U A L I T I E S  

We present here a proof of the generalized Griffiths inequalities for two- 
component rotators (Section 2. lc). We modify slightly the method of Ref. 1. 
By expanding the coupling term between different lattice sites in the usual 
way, the inequalities are proved by showing 

f (s ')b(t' - t) a dlzo(S, t) ', t') >t 0 (A1) + S')a(S S + t)c(t ' dtzo(S 

for all nonnegative integers a, b, c, d. We have set s = a ~ and t = ~2~ and 
s', t '  are duplicate variables. (See, e.g., Refs. 1, 8, and 39.) 

Given that 

dlzo(S, t) = exp[ -  V(s 2 + t2)] ds dt 

we write 

Z(s 2 + t 2) + V(s '2 + t '2) = ~e(s, s', t, t') + ~o(s, s', t, t') 
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where 

= ~ V ( s  ~ + t ~) + V(s  '~ + t ~) + V(s  2 + t '~) + V(s  '2 + t'~)} 

~o = ~ V ( s  2 + t2) - V(s  '2 + t2) - V(s  2 + t'2) + V(  s'2 + t'2)} 

Note that ~ is invariant under interchange of s, s '  and under interchange of 
t, t ' ,  whereas ~oo changes sign. 

The integral in (A1) is zero unless all a, b, c, d are even or all are odd, 
since/Xo is invariant under s ~ - s  and under t--+ - t .  The integral is non- 
negative if all a, b, c, d are even; thus we consider the case where all exponents 
are odd. 

Let 

= ( ( s  + s ' ) ~ + l ( s  - s ' )b+~( t  ' + t ) c + l ( t  ' - t )  T M  I(A) 

I 
• (s 2 _ s,2)(t,2 _ t2 ) e - A ~ o e - ~ ,  ds ds'  dt  d t '  (A2) 

Then I(1) is the integral in (A1). If  A = 0, I(0) = 0 as follows by inter- 
changing s, s'. The result I(1) 1> 0 then follows if we show (d/dA)I()t) >1 O, 

x Y / ' o  e - a ~ o e - ~  ds ds'  dt d t '  (A3) 
(s  2 - s '2 ) ( t2  _ t ,~)  

But 

r 1 ~ I [ V ( s  2 + t ~) - V ( s  '~ + t 2)] 
t 2 -  t ' 2 = 2 ~ = t ~  

= 1 [V,(s 2 + t12) _ V, (s ,  2 + t12) ] 
2 

for some t~ 2 depending on t 2, (2. Then 

~ o / ( s  2 - s '2 ) ( t  ~ - t '2) = �89 2 + t~ 2) >>. o 

since V(~:) is convex for f >t 0. (If V is not a smooth function consider first 
a smooth approximation to V and then take limits.) 

This completes the proof. 
We remark that the same method proves the GHS inequality of Section 

2.1b for one-component spins. The method is related to the ones in Refs. 8 
and 39. The GHS inequality follows from a Lebowitz inequality, (26~ which 
again follows from inequality (A1), where now 

d~o(S, t )  = d~(~) d~(~), s = (~ + . ) / 2 ,  t = (~ - . ) / 2  
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y! ~- is a duplicate variable for  ~, and a' ,  are reduplicated variables. Given  
tha t  d r ( a ) =  e-W(~) da, we proceed as above with V(s, t ) =  W ( s  + t ) +  

W ( s  - t). Then  

~o 
(s 2 - s '2)(t2 - t'2) 

1 1 
2(s 2 - s '2) t 2 _ t,2 

x ([V(s, t)  - V(s ' ,  t)] 

--  [U(s ,  t ' )  --  V ( s ' ,  t')]} 

1 1 [c~tV(s, tl) - ~3tV(s', t2)] 
2(s 2 s '2) 2tl  

1 
2(s2 _ s,2)2t ~ [W'(s  + tO - W ' ( s  - t~) 

- W ' ( s '  + tO  + W ' ( s ' -  tl)] 

1 
8tls~ [W"(s l  + tz) - W"(s l  - tl)] 

and since W is even, we may  suppose s l ,  tl /> 0, I f  sl  - t~ > /0  we use 
(s~ + tO - (sl - tO = 2tl to obta in  

~o 1 
(s  ~ - s ' ~ ) ( t  ~ - t '~) = ~ w " ( ~ )  >1 o 

since W'  is convex for  ~ /> 0. I f  s~ - t~ < 0 we interchange s and t in this 
last step. 

APPENDIX B. THE PATH SPACE FOR A SCHRODINGER 
PARTICLE 

Let  Ho = �89 2 + �89 2 - �89 the harmonic  oscillator with frequency 
m. Fo r  Ho explicit computa t ion  of  the lef t-hand side of  (2) shows (21) that  
the pa th  space is given by the Gauss ian  variables ~(t), 0 ~< t ~< /3, with 
covar iance 

1 e ~K(tz - t2) 
(4(t~)4(t2)) = ~ ~ A K K 2  + m ~ (B1) 

where K = (2,r//3)n, n ~ 7/, AK = 2,r//3. We may  write 

~(t)  = qo + V" flrm(t//3) (B2) 

where qo, rm(t) are independent  Gauss ian  processes with (qo 2) = 1//3m 2, 

e ~ 2 ~ n ( , l  - t 2)  

(rm(tz)rm(t2)) = ~" (2rrn) z + m2f12, tz, tz ~ [0, 1] 
n # o  



Critical Lengths and Temperatures for Lattice Systems 157 

which is equal to 

1 (e_mBix I 1 e mBx + e -mBx 1 
4rn/3 - e~'fxl) + 4rn~ tanh(mfi/2) (rn/3) 2 

if x =  t l -  t2e [ - �89189  
Now suppose W(q) is a continuous function bounded from below. Then 

Ho + W is essentially self-adjoint (only a local L~ condition is required for 
essential self-adjointness(23)). From the Trotter product formula 

e - S(~o + w(q, = strong lim[e- ~noe - ~w(~)]~/~ (B3) 
~-- ,0 

The path space formula (2) gives 

Tr{exp(-�89 exp[-(/3 - s)(Ho + W)] exp(-�89 
Tr[exp( -/3Ho)] 

= \ e x P L - -  s/2 ds 

In deriving (B4) we have used the fact that the operators occurring in (B3) 
are uniformly bounded in norm and e-Sno is trace-class. For a discussion of 
the integral in (B4) see, for example, Ref. 25. We note simply that ~(s) is 
continuous in s for almost every path, as follows by Kolmogorov's cri- 
terion. ~4~ From (B4) we see that 

lim 
8-.o Tr[exp(-/3Ho)] 

Tr(exp(-  �89 e x p [ -  (/3 - s)(Ho + W)] e x p ( -  �89 

= ~ e x p [ - f f  W(4(s)) d s ] )  (B5) 

It follows from (B5) that 

Tr exp[-f l (Ho + W)] ~ [ f~  ] )  
Tr e x p ( -  flHo) < exp - W(g(s)) as 

~< lim Tr exp[- ( f l  - s)(Ho + W)] (B6) 
~-~o Tr exp(-PHo)  

Since (B6) implies exp[-/3(Ho + W)] is trace-class (for any fl > 0), the rhs 
of (B6) converges to Tr exp[-/3(Ho + W)] and we have 

Tr exp[-~(Ho + W)] ~ [ f; J) Tr exp(-f lHo) = exp - W(4(s)) ds (B7) 



158 W. Driessler, L. Landau, and J. Fernando Perez 

Evaluating Trexp(-f lHo)  and using the representation (B2), we obtain 
from (B7) 

Tr exp[-fi(Ho + W)I 

= [ t i m 2 ]  1/2 1 
\-2g-~ ] 1 - exp(-flm) 

x f ; = d x  (exp f l m ~ x = ) ( e x p [ - f i f : d t  W ( x +  ~/fir=(t))]), .  

(BS) 
Now let W = V - �89 2 + �89 where V is such that W is bounded from 
below for m sufficiently small: V(x)>1 a + bx 2 for some b > 0. Using 
f~ rm(t) dt = 0 and 

fo exp �89 rm(t) 2 dt = [exp(�89 - exp(-�89 

we obtain 

1 ~ 1 

where r(t) is the Gaussian stochastic process with covariance 

e i 2 ~ z n ( t l  - t2) 
(r(tl)r(t2)) = . ~  ~ , h ,  t2 e [0, 1] (Sl0) 

which is equal to ~{(tl - t2) 2 - )1 - t2l + ~} if - �89  ~< tl - t2 < �89 
The path space determined by (B10) is convenient because it is transla- 

tion invariant (t ---> t + a). To see the equivalence with the Wiener process, 
note that 

P(t) =- r(t) - r(O) 
is the Wiener process for paths satisfying f(O) = 0 = f(1). 

In deriving correlation inequalities for quantum systems, an important 
role is played by the lattice approximation, ~9~ for which inequalities for 
classical lattice systems are applicable. It is easy to obtain an appropriate 
lattice approximation {not the usual one, which would involve [exp(- 87r~/2) 
x exp ( -8  V)] B/~} from Eqs. (B3) and (B5): 

lira Iim Tr{[exp(- �89 [exp(- 8//o) exp ( -  3 W)] ~ -'~/~ exp ( -  �89 
s-,0 ~-o Tr exp(-flH0) 

= (exp[-f;  W(4(,)) d,])  
(and a similar formula for expectation values). 

(m l) 
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The kernel of e-OUo is 

exp( -  8H0)(x, y) = ~r 
/?7 

x exp 2 tanh rn3 x2 + cosh m8 xy  

and this leads to a nearest neighbor, ferromagnetic, pair-interacting, classical 
lattice model for which the correlation inequalities of Section 2.1 are valid. 
These inequalities then carry over to the limit (B11). 

A P P E N D I X  C. DEFINITION OF S P O N T A N E O U S  
M A G N E T I Z A T I O N  FOR THE ISING M O D E L  
W I T H  T R A N S V E R S E  FIELD 

In this appendix we review standard convexity arguments to show that 
for a class of boundary conditions, the spontaneous magnetization for the 
Ising model with transverse field is independent of boundary conditions. We 
consider boundary conditions for the path space at t = +fl/2 given by a 
measure t~(to", co') on the configurations of the classical random variables 

~( + 5/2). 
Let us define a finite-volume pressure by the formula 

1 ,,le_etiv(b:o.)]a ~ P(/3, V,/*, b.c.) = f i - ~  In ~ /*(to", ta')<a ~ = = to') 

*! t o  t where/x is a measure on t~ ,  and b.c. denotes the boundary condition in 
V ~, the complement of the (space) volume V (see Section 2.5). 

Since 

<a* -- to"lexp[-/3~v(b.c.)][=~ -- to') 
t /  z ~_+| (a* = to [f~v(b.c.))(f2v(b.c.)la = ~ ' )  r 0 

{f~v(b.c.) is strictly positive since exp[-filly(b.c.)] is positively improving (as~}, 
it follows that 

P(/3, V,/,, b.c.) ~ -Ev(b.c . ) / I  V] 

independent of/x, where Ev(b.c.) is the ground state energy of Hv(b.c.). 
Also, 

lira Ev(b.c.)/I V I = E 
V,,-,Z s 

independent of the boundary condition (b.c.) by standard arguments: If  
V = V1 + V~ and V1 is decoupled from 112 so that H = Hvi + Hv2, then 
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E = E w  + E w .  The coupling term in norm is small by a surface/volume 
factor yielding convergence of Ev(b.c,)/lVI and independence from boundary 
conditions (if V Z 7/~ in the sense of van Hove). 

Thus 

lira lim P(/3, V;/z, b.c.) = 
VA2~ s B'-* co 

independent of/z, b.c. 
With an external field h in the z direction, the Hamiltonian has an 

additional term - h  ~ v a ~  ~ and the path space formula shows that 
P(/3, I7, t~, b.c.) is convex  as a function of h, and therefore so is the limiting 
function E. Furthermore, 

0 
~ P(/~, V, ~, b.c.) 

= ~ ds t~(to", r a ~ = to"l(exp[-sBICIv(b.c.)]}  

x ~, cr~" exp[-(1 - s)B~v(b.c.)]l~ ~ = t o ' ~  
/ 

x [ ~  ,(to", to ' ) (~  -- to"lexp[-/3/?v(b.c.)l[a ~ -- to,)]-1 

1 
~ ~  ]--vT ~ (nv(b'c ')l~lf~v(b'c '))  

tEV 

independent of t~. Now if 

independent of i [which is the case for Dirichlet and (+ )  boundary conditions, 
and for periodic boundary conditions with a nonzero external field], then it 
follows that 

lim lim 0 p , vlz8 ~oo ~-h (/3 V, ~, b.c.) -- (o~)b.o. 

Since P(fl, V,/~, b.c.) is a convex function of h, it follows that tangents to 
P(~, V, ~, b.c.) converge to tangents of E. Then the spontaneous magnetiza- 
tion is given by lim~, 0(e~)b.o.(h) and is equal to the right derivative of e at 
h = 0 independent of the boundary condition (b.c.). 

In fact for Re h > 0 the Lee-Yang theorem together with Vitali's 
theorem can be used to show that e(h) is analytic and therefore (e~)b.o. -- 
ae/ah independent of the boundary condition (b.c.) for h > O. 
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